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Jacobi equations. These non-oscillatory, non-staggered schemes are first- and
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1 Introduction

In this work we consider numerical approximations for solutions of multi-dimensional
Hamilton-Jacobi (HJ) equations of the form

∂φ(~x, t)

∂t
+ H(~x, φ,∇φ) = 0, ~x ∈ R

N , (1.1)

subject to the initial data φ(~x, t=0) = φ0(~x).
Hamilton-Jacobi equations are of special interest in a variety of applications, such

as, e.g., optimal control theory, image processing, geometric optics, differential games
and the calculus of variations. When the Hamiltonian does not depend on φ, solutions
for (1.1) with smooth initial data will typically remain continuous but will develop
discontinuous derivatives in finite time. Such solutions are not unique, and therefore

∗Program in Scientific Computing/Computational Mathematics, Stanford University and the NASA
Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA 94035-1000;
bryson@nas.nasa.gov

†Department of Mathematics, Stanford University, Stanford, CA 94305-2125;
dlevy@math.stanford.edu

1



2 S. Bryson and D. Levy

a mechanism is required for singling out a “physically relevant solution”, the viscosity
solution. For convex Hamiltonians the viscosity solution coincides with the limit solution
obtained by the vanishing viscosity method [11]. Extensions to general Hamiltonians
were introduced by Crandall and Lions in [7], and have been systematically studied
thereafter in a series of works [3, 5, 6, 25].

Hamilton-Jacobi equations are closely related to hyperbolic conservation laws. Yet
while the literature on numerical methods for conservation laws is flourishing, very little
attention is given to numerical methods for HJ equations. This is surprising given
their increasing role in different applications. Crandall and Lions introduced in [8] first-
order numerical approximations to the viscosity solution of a simplified version of (1.1),
with a Hamiltonian that only depends on the derivative of φ. Discontinuous Galerkin
(DG) methods for HJ equations were introduced in [10, 22]. Multi-dimensional DG
schemes are based on transforming a scalar equation into a weakly hyperbolic system
which is over- or under-determined, hence an additional least-squares step is required
to single out a solution. High-order Godunov-type methods were introduced in Shu
[32, 33], and were based on an Essentially Non-Oscillatory (ENO) reconstruction step
that was evolved in time with a first-order monotone flux. The least dissipative flux, the
Godunov flux, requires solving Riemann problems at cell interfaces. Central schemes
avoid these difficulties by evolving the solution in smooth regions, i.e., by averaging
over discontinuities. Such schemes have been widely studied for conservation laws, the
prototype being the first-order Lax-Friedrichs (LxF) scheme [9]. A one-dimensional
second-order extension is due to Nessyahu and Tadmor [31]. Central schemes do not
require Riemann solvers, which makes them suitable for solving systems of equations
and for multi-dimensional problems. Extensions to two-space dimensions were done in
[2, 14]; high-order central schemes were developed in [4, 23, 24, 28]; semi-discrete schemes
that reduced the numerical dissipation and eliminated the staggering were developed in
[16, 17, 19].

Central schemes have recently been extended to the HJ equations in [30], which
applied the first- and second-order staggered central schemes of [14, 31] to HJ equations
in one and two space dimensions. L1 convergence of order one for this scheme was
proved in [29]. In [18], a second-order semi-discrete scheme was presented, following the
techniques for hyperbolic conservation laws [16, 19]. While less dissipative, this scheme
requires the estimation of the local speed of propagation, which is computationally
intensive in particular in multi-dimensional problems. In a later work, [17], the numerical
viscosity was further reduced by computing more precise information about local speed
of propagation.

In this paper we derive non-staggered fully-discrete central schemes for approxi-
mating solutions of (1.1). These methods combine the ideas of [18, 30], with several
additional ingredients. Our scheme is presented as an N -dimensional algorithm which
is designed with special consideration to performance and scaling to higher dimensions.
We develop both first- and second-order accurate schemes. These schemes are based on
a projection step which is one-dimensional regardless of the dimension of the problem.
The methods described in this paper can also be thought of as the first step toward
higher-order schemes, which is the subject of a forthcoming paper.
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This paper is organized as follows: In Section 2 we develop our first and second
order scheme in one dimension. Section 3 is the heart of the paper, where we gen-
eralize these schemes to N dimensions, first introducing a multi-index notation, then
deriving the location of the evolution points, and finally presenting the algorithm. Sec-
tion 4 presents various examples, demonstrating the first- and second-order convergence
of these schemes. We present a sample code implementation of our 2D second-order
algorithm in the appendix.

Acknowledgment: We would like to thank Ian Mitchell for helpful discussions and for
suggesting the averaging strategy that is used to avoid staggering in the schemes. We
also thank Volker Elling for helpful comments on early drafts of this paper.

2 The One-Dimensional Scheme

Consider the one dimensional Hamilton-Jacobi (HJ) equation

φt + H (φx) = 0, (2.1)

subject to the initial data φ(x, t=0) = φ0(x). In order to approximate solutions of (2.1)
we introduce a grid in space and time with mesh spacings, ∆x and ∆t, respectively.
We denote the grid points by xi = i∆x and tn = n∆t, and the fixed mesh ratio by
λ = ∆t/∆x. Let ϕn

i denote the approximate value of φ (xi, t
n), and (ϕx)

n
i denote the

approximate value of the derivative φx (xi, t
n). We define (∆ϕ)n

i+ 1
2

:= ϕn
i+1 − ϕn

i .

Given ϕn
i , an approximate solution at time tn, the approximate solution at the next

time step tn+1, ϕn+1
i , is obtained as follows:

1. Reconstruct a continuous piecewise-polynomial from the data, ϕn
i , and sample it

at the half-integer points, {xi+1/2}, to obtain the values of ϕn
i+ 1

2

and its derivative,

(ϕx)
n
i . The order of the polynomial is related to the overall order of accuracy of

the method.

2. Evolve ϕn
i+ 1

2

by solving (2.1) from time tn to time tn+1, obtaining ϕn+1
i+ 1

2

. This

evolution is done at the half-integer grid points where the reconstruction is smooth,
so long as the CFL condition λ |H ′ (ϕx)| ≤ 1/2 is satisfied.

3. Project ϕn+1
i+ 1

2

back onto the integer grid points {xi} to get ϕn+1
i .

2.1 A First Order Method

The derivation of the first-order method starts by reconstructing a piecewise-linear in-
terpolant of the form

ϕ (x, tn) :=
∑

i

[

ϕn
i +

(∆ϕ)n
i+ 1

2

∆x
(x− xi)

]

χi+ 1
2
(x), (2.2)
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where χi+ 1
2
(x) is the characteristic function of the interval [xi, xi+1). The values of the

interpolant (2.2) and its derivative at the half-integer grid points, xi± 1
2

are

ϕn
i± 1

2
= ϕn

i ±
1

2
(∆ϕ)n

i± 1
2
, (ϕx)

n
i± 1

2
=

(∆ϕ)n
i± 1

2

∆x
.

Integrating (2.1) in time from tn to tn+1 at xi± 1
2

gives

ϕn+1
i± 1

2

= ϕn
i± 1

2
−∆tH

(

(ϕx)
n
i± 1

2

)

= ϕn
i ±

1

2
(∆ϕ)n

i± 1
2
−∆tH

(

(ϕx)
n
i± 1

2

)

.

Finally, we project the evolved solution back onto the original grid points. For a first-
order method it is sufficient to average ϕn+1

i±1/2,

ϕn+1
i =

ϕn+1
i+ 1

2

+ ϕn+1
i− 1

2

2
= (2.3)

= ϕn
i +

1

4

(

(∆ϕ)n
i+ 1

2
− (∆ϕ)n

i− 1
2

)

− ∆t

2

[

H

(

(∆ϕ)n
i+ 1

2

∆x

)

+ H

(

(∆ϕ)n
i− 1

2

∆x

)]

.

The intermediate values ϕn+1
i±1/2 are the same as those computed in the first-order

method in [31], so in one dimension we only add the projection step. This eliminates the
grid staggering in [31] with little computational cost since no additional flux evaluations
are required.

2.2 A Second Order Method

The second-order scheme is based on a piecewise-quadratic interpolant of the form

ϕ (x, tn) :=
∑

i

[

ϕn
i +

(∆ϕ)n
i+ 1

2

∆x
(x− xi) +

1

2

D (∆ϕ)n
i+ 1

2

(∆x)2 (x− xi) (x− xi+1)

]

χi+ 1
2
.(2.4)

Here, D is a limiter whose goal is to prevent oscillations while maintaining the order of
accuracy of the method. There are various possibilities for choosing such limiters (see
[37]). One such example is the Min-Mod limiter,

Dfi := MM

[

θ(fi+1 − fi),
1

2
(fi+1 − fi−1), θ(fi+1 − fi)

]

, 1 ≤ θ ≤ 2,

where the Min-Mod function is defined as

MM (x1, x2, . . .) :=







minj {xj} , if all xj > 0,
maxj {xj} , if all xj < 0,
0, otherwise.

Since the solution of the HJ equations generally has a discontinuous first-derivative, we
follow [18] by limiting the second-derivative. With the Min-Mod limiter, the second
derivative is approximated by D(∆ϕ)n

i+1/2/(∆x)2, where

D (∆ϕ)n
i+ 1

2
= MM

[

θ
(

(∆ϕ)n
i+ 3

2
− (∆ϕ)n

i+ 1
2

)

,
1

2

(

(∆ϕ)n
i+ 3

2
− (∆ϕ)n

i− 1
2

)

,

θ
(

(∆ϕ)n
i+ 1

2
− (∆ϕ)n

i− 1
2

)]

.



Central Schemes for HJ Equations 5

Sampling (2.4) and its derivative at the half-integer grid points gives

ϕn
i± 1

2
= ϕn

i ±
1

2
(∆ϕ)n

i± 1
2
− 1

8
D (∆ϕ)n

i± 1
2
, (ϕx)

n
i± 1

2
=

(∆ϕ)n
i± 1

2

∆x
.

We integrate (2.1) from time tn to time tn+1 using the second-order midpoint quadra-
ture

∫ tn+1

tn
H
(

ϕx

(

xi± 1
2
, tn
))

dt ≈ ∆tH
(

(ϕx)
n+ 1

2

i± 1
2

)

.

The required mid-values, ϕx

(

xi± 1
2
, tn+ 1

2

)

, can be predicted using a Taylor expansion,

ϕx

(

xi± 1
2
, tn+ 1

2

)

= ϕx

(

xi± 1
2
, tn
)

+
1

2
∆tϕtx

(

xi± 1
2
, tn
)

+ O
(

(∆t)2) =

= ϕx

(

xi± 1
2
, tn
)

− 1

2
∆tH ′

(

ϕx

(

xi± 1
2
, tn
))

ϕxx

(

xi± 1
2
, tn
)

+ O
(

(∆t)2) ≈

≈
(∆ϕ)n

i± 1
2

∆x
− 1

2
λH ′

(

(∆ϕ)n
i± 1

2

∆x

)

D (∆ϕ)n
i± 1

2

∆x
,

which leads to

ϕn+1
i± 1

2

= ϕn
i± 1

2
−∆tH

(

(∆ϕ)n
i± 1

2

∆x
− 1

2
λH ′

(

(∆ϕ)n
i± 1

2

∆x

)

D (∆ϕ)n
i± 1

2

∆x

)

. (2.5)

Finally, we project (2.5) back onto the integer grid points using a quadratic interpolant

ϕn+1
i = ϕn+1

i− 1
2

+
(∆ϕ)n+1

i

∆x

(

xi − xi− 1
2

)

+
1

2

D (∆ϕ)n+1
i

(∆x)2

(

xi − xi− 1
2

)(

xi − xi+ 1
2

)

=

= ϕn+1
i− 1

2

+
1

2
(∆ϕ)n+1

i − 1

8
D (∆ϕ)n+1

i ,

where (∆ϕ)n+1
i = ϕn+1

i+ 1
2

− ϕn+1
i− 1

2

, and

D (∆ϕ)n+1
i = MM

[

θ
(

(∆ϕ)n+1
i+1 − (∆ϕ)n+1

i

)

,
1

2

(

(∆ϕ)n+1
i+1 − (∆ϕ)n+1

i−1

)

,

θ
(

(∆ϕ)n+1
i − (∆ϕ)n+1

i−1

)

]

.

Remark. We would like to note that even in the 1D scheme, there are several differences
between our method and the second-order scheme in [30]. A second-order interpolant is
used to re-project the evolved fields back onto the original grid points, resulting with a
non-staggered grid compared with the staggered scheme in [30]. Also, we follow [18] by
applying the nonlinear slope limiters to the second derivative.
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3 Generalization to N Dimensions

We are concerned with approximating solutions of the N -dimensional HJ equation of
the form

φt + H(∇φ) = 0, ~x ∈ R
N , (3.1)

subject to the initial data φ(~x, t) = φ0(~x).

In Section 3.1 we introduce a multi-index notation, which allows a presentation
that nicely parallels the one-dimensional case. We then compute the optimal location
of the evolution points. Sections 3.2 and 3.3 develop the first- and second-order N -
dimensional schemes. The first-order method in §3.2 below applies as is to the case
where the Hamiltonian H depends also on ~x and φ. We extend the second-order method
of §3.3 to this more general case in a remark.

3.1 Preliminaries

A multi-index notation. We define the multi-index α = (α1, α2, . . . , αN), and denote

by xα, the point xα =
(

x
(1)
α1 , x

(2)
α2 , . . . , x

(N)
αN

)

∈ R
N . Here x(k) denotes the k-th coordinate

of x so x
(k)
αk = αk∆x(k). For example, in the conventional three-dimensional notation

with indices i, j and k and components (x, y, z), α = (i, j, k) and xα = (xi, yj, zk).

For a given α we define the special multi-indices α± ek := (α1, . . . , αk ± 1, . . . , αN),

which denotes an increment in the k direction. Then ϕn
α = ϕ(x

(1)
α1 , x

(2)
α2 , . . . , x

(N)
αN ; tn) and

ϕn
α±ek

= ϕ(x
(1)
α1 , . . . , x

(k)
αk ± ∆x(k), . . . , x

(N)
αN ; tn). Finally, we denote the evolution points

with the multi-indices ± := (α1 ± a, α2 ± a, . . . , αN ± a), for some constant a, so that

ϕn
± = ϕ(x

(1)
α1 ± a∆x(1), x

(2)
α2 ± a∆x(2), . . . , x

(N)
αN ± a∆x(N); tn).

The location of the evolution points. We would like to determine the optimal
location of the evolution points. For simplicity we assume a grid point at the origin,
x = (0, 0, . . . , 0), and scale the coordinates such that ∀k, ∆x(k) = 1. The two evolution
points will then be located at x± = (±a,±a, . . . ,±a) for a constant a that is yet to be
determined.

Consider the evolution point x+, which is at a distance
√

Na from the origin. The
value of ϕ at this point will be based on a polynomial that is constructed inside the
(hyper-) volume bounded by the coordinate planes and the (hyper-) plane

∑N
i=1 x(i) = 1.

There will be discontinuities in the first-derivative of the piecewise-polynomial inter-
polant ϕ(x, tn) along the sides of this hyper-volume. Since we evolve the solution in
smooth regions, an optimal choice of the evolution points is at an equidistant location
from these boundaries. The diagonal line (s, s, . . . , s) (for some parameter s) intersects
the (hyper-)plane

∑N
i=1 x(i) = 1 at s = 1/N , or at the point xp =

(

1
N

, 1
N

, . . . , 1
N

)

which

is at a distance 1/
√

N from the origin (see Figure 3.1).

The optimal choice is to require that the evolution points are equidistant from the
coordinate planes and the intersection point xp. The distance from x+ to all the coordi-
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nate planes is a. The distance from x+ to xp is 1/
√

N−a
√

N , therefore the requirement
that x+ be equidistant from the coordinate planes and xp is

a =
1

N +
√

N
.

The evolution points in [30] were chosen as a = 1/4, which places them equidistant
between the origin and the intersection point xp. In N dimensions this choice generalizes
to a = (2N)−1. In our case, when N = 2, a = (2 +

√
2)−1 ≈ 0.29 which is about 15%

larger than the choice a = 1/4. When N = 3, a = (3 +
√

3)−1 ≈ 0.21 which is about
30% larger than the choice a = 1/6. Thus the optimal choice of a will allow larger mesh
ratios, leading to larger time steps and less dissipation.
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Figure 3.1: The location of the evolution points x± and xp in 2D.

3.2 A First Order Method

For simplicity we assume that the spacing is identical in every direction, i.e., ∆x(k) = ∆x,
for all k. Generalization of the methods below to the case where ∆x(k) 6= ∆x(j) for
k 6= j is straightforward. We define the forward- and backward-differences in the k-th
component as ∆+

k ϕn
α := ϕn

α+ek
−ϕn

α and ∆−
k ϕn

α := ϕn
α−ϕn

α−ek
, respectively. At each grid

point xα we reconstruct two linear interpolants that are valid in the two hyper-quadrants
that contain the points x± = xα ± (a, . . . , a)∆x,

ϕ± (x, tn) := ϕn
α +

N
∑

k=1

∆±
k ϕn

α

∆x

(

x(k) − x(k)
αk

)

. (3.2)

In order to compute the solution at the next time step at xα, we first compute the
solution at time tn+1 at the evolution points x±, and then average these two values. The
value of the linear interpolant (3.2) at x± is

ϕ(x±, tn) = ϕn
α ± a

N
∑

k=1

∆±
k ϕn

α,
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and its derivative is

(∇ϕ)n
± :=

(

∆±
1 ϕn

α

∆x
, . . . ,

∆±
Nϕn

α

∆x

)

.

Hence, the values at the evolution points x± at the next time step, tn+1, are given by

ϕ(x±, tn+1) = ϕ(x±, tn)−
∫ tn+1

tn
H (∇ϕ (x±, tn)) dt ≈ ϕ(x±, tn)−∆tH

(

(∇ϕ)n
±
)

=

= ϕn
α ± a

N
∑

k=1

∆±
k ϕn

α −∆tH

(

∆±
1 ϕn

α

∆x
, . . . ,

∆±
Nϕn

α

∆x

)

.

The value at tn+1 at xα is finally obtained by averaging ϕn+1
± := ϕ (x±, tn+1) (compare

with (2.3)),

ϕn+1
α =

1

2

(

ϕn+1
+ + ϕn+1

−
)

= (3.3)

= ϕn
α +

a

4

(

N
∑

k=1

∆+
k ϕn

α −
N
∑

k=1

∆−
k ϕn

α

)

−

−∆t

2

(

H

(

∆+
1 ϕn

α

∆x
, . . . ,

∆+
Nϕn

α

∆x

)

+ H

(

∆−
1 ϕn

α

∆x
, . . . ,

∆−
Nϕn

α

∆x

))

.

3.3 A Second Order Method

For simplicity we assume again that the mesh spacing is identical in every spatial di-
rection, i.e., ∆x(k) = ∆x, for all k. Similarly to the 1D case in Section 2.2, the N -
dimensional second-order method is based on a piecewise-quadratic polynomial. For
every grid node we reconstruct two N -dimensional quadratic interpolants: ϕ+ (x, tn)
for the hyper-quadrant along the positive diagonal, and ϕ− (x, tn) along the negative
diagonal (see Figure 3.1),

ϕ± (x, tn) := ϕn
α +

N
∑

k=1

∆±
k ϕn

0

∆x

(

x(k) − x(k)
α

)

+ (3.4)

+
1

2

N
∑

k=1

Dk∆
±
k ϕn

α

(∆x)2

(

x(k) − x(k)
α

)

(

x(k) − x
(k)
α±ek

)

+

+
1

2

N
∑

j=1

N
∑

k=1
k 6=j

Dj∆
±
k ϕn

α

(∆x)2

(

x(j) − x(j)
α

) (

x(k) − x(k)
α

)

.

The Min-Mod limiter in the j-th direction acting on ∆±
k ϕn

α is

Dj∆
±
k ϕn

α = MM
[

θ
(

∆±
k ϕn

α+ej
−∆±

k ϕn
α

)

,

1

2

(

∆±
k ϕn

α+ej
−∆±

k ϕn
α−ej

)

, θ
(

∆±
k ϕn

α −∆±
k ϕn

α−ej

)

]

,
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so that Dj∆
±
k ϕn

α/ (∆x)2 approximates the second derivative ∂2ϕ (xα, tn) /∂x(j)∂x(k).

Now x
(k)
± − x

(k)
α = ±a∆x, x

(k)
+ − x

(k)
α+ek

= (a− 1)∆x and x
(k)
− − x

(k)
α−ek

= − (a− 1)∆x
so evaluating (3.4) at x±

ϕn
± := ϕ± (x±, tn) =

= ϕn
α ± a

N
∑

k=1

∆±
k ϕn

α +
a (a− 1)

2

N
∑

k=1

Dk∆
±
k ϕn

α +
a2

2

N
∑

j=1

N
∑

k=1
k 6=j

Dj∆
±
k ϕn

α.

The approximation to the first derivative of (3.4) in the p-th direction is given by

∂ϕ± (x, tn)

∂x(p)
≈

∆±
p ϕn

α

∆x
+
Dp∆

±
p ϕn

α

2 (∆x)2

[(

x
(p)
± − x(p)

α

)

+
(

x
(p)
± − x

(p)
α±ep

)]

+

+
1

2 (∆x)2

N
∑

k=1
k 6=p

[

Dp∆
±
k ϕn

α +Dk∆
±
p ϕn

α

]

(

x
(k)
± − x(k)

α

)

,

which when evaluated at x± is
(

∂ϕ

∂x(p)

)n

±
:=

∂ϕ± (x, tn)

∂x(p)

∣

∣

∣

∣

x±

=

=
∆±

p ϕn
α

∆x
± 2a− 1

2

Dp∆
±
p ϕn

α

∆x
± a

2

N
∑

k=1
k 6=p

Dp∆
±
k ϕn

α +Dk∆
±
p ϕn

α

∆x
.

The approximation to the second derivative is given by
(

∂2ϕ±
∂x(q)∂x(p)

)n

=
Dp∆

±
q ϕn

α +Dq∆
±
p ϕn

α

2 (∆x)2 .

The solution at the next time step at the evolution points ϕn+1
± is obtained by

evolving the reconstruction (3.4) according to (3.1). The integral of the Hamiltonian

is approximated by a second-order midpoint quadrature,
∫ tn+1

tn
H (∇ϕ (xi±, tn)) dt ≈

∆tH
(

(∇ϕ)
n+ 1

2
±

)

, which at the evolution points gives

ϕn+1
± = ϕn

± −∆tH
(

(∇ϕ)
n+ 1

2
±

)

. (3.5)

Here (∇ϕ)n
± :=

(

(

∂ϕ
∂x(1)

)n

± , . . . ,
(

∂ϕ
∂x(N)

)n

±

)

denotes the approximation to the gradient at

x±. The mid-values in time can be estimated via the Taylor expansion using (3.1),

∂ϕ

∂x(p)

(

x±, tn+ 1
2

)

=
∂ϕ

∂x(p)
(x±, tn) +

∆t

2

∂2ϕ

∂x(p)∂t
(x±, tn) + O

(

∆t2
)

= (3.6)

=
∂ϕ

∂x(p)
(x±, tn)− ∆t

2

N
∑

k=1

∂

∂ ∂ϕ
∂x(k)

H (∇ϕ (x±, tn))
∂2ϕ

∂x(p)∂x(k)
(x±, tn) + O

(

∆t2
)

.
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Hence,

(

∂ϕ

∂x(p)

)n+ 1
2

±
:=

∆±
p ϕn

α

∆x
± 2a− 1

2

Dp∆
±
p ϕn

α

∆x
± a

2

N
∑

k=1
k 6=p

Dp∆
±
k ϕn

α +Dk∆
±
p ϕn

0α

∆x
−

−∆t

2

N
∑

k=1

∂

∂ ∂ϕ
∂xk

H
(

(∇ϕ)n
±
) Dp∆

±
k ϕn

α +Dk∆
±
p ϕn

α

2 (∆x)2 .

0
D

2
D

2
Dx

x

x
−

x

x

x

x

i+1,j+1

(+1)−

+

i,j

−

(−1)+

i−1,j−1

D

D
+

Figure 3.2: The location of the points x+, x−, x(−1)+ and x(+1)− used in the projection
step along with the distances D0, D+ and D− in the two dimensional case.

All that remains is to project (3.5) back onto the original grid points, xα. This
projection is one-dimensional regardless of N . We use the four evolution points x+, x−,

x(−1)+ :=
(

x
(1)
α −∆x(1) + a∆x(1), x

(2)
α −∆x(2) + a∆x(2), . . . , x

(N)
α −∆x(N) + a∆x(N)

)

and

x(+1)− :=
(

x
(1)
α + ∆x(1) − a∆x(1), x

(2)
α + ∆x(2) − a∆x(2), . . . , x

(N)
α + ∆x(N) − a∆x(N)

)

(see

Figure 3.2). The distances between the evolution points are D0 := |x+ − x−| =
2a
√

N∆x, D+ :=
∣

∣x(+1)− − x+

∣

∣ = (1− 2a)
√

N∆x, and D− :=
∣

∣x(−1)+ − x−
∣

∣ = D+.
We then define the approximations to the first derivative along the diagonal,

(dϕ)n+1
0

D0

:=
ϕn+1

+ − ϕn+1
−

D0

,
(dϕ)n+1

+

D+

:=
ϕn+1

(+1)− − ϕn+1
+

D+

,

(dϕ)n+1
−

D−
:=

ϕn+1
+ − ϕn+1

(−1)+

D−
.
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The approximation to the second derivative is the limited difference D (dϕ)n+1
0 /D2,

where D2 = 1
2
(D0 + D+), and

D (dϕ)n+1
0 = MM

[

θ

(

(dϕ)n+1
+

D+

− (dϕ)n+1
0

D0

)

,
1

2

(

(dϕ)n+1
+

D+

− (dϕ)n+1
−

D−

)

, (3.7)

θ

(

(dϕ)n+1
0

D0
−

(dϕ)n+1
−

D−

)]

.

The approximated value at the next time step tn+1 at the grid point xα is therefore
given by

ϕn+1
α = ϕn+1

− +
(dϕ)n+1

0

D0
(xα − x−) +

D (dϕ)n+1
0

2D2
(xα − x−) (xα − x+)

= ϕn+1
− +

ϕn+1
+ − ϕn+1

−
D0

D0

2
− D (dϕ)n+1

0

2D2

D2
0

4

=
1

2

(

ϕn+1
+ + ϕn+1

−
)

− D2
0

8D2

D (dϕ)n+1
0 ,

where ϕn+1
± is given by (3.5) and D (dϕ)n+1

0 is given by (3.8).

Remarks.

1. If the Hamiltonian H depends also on ~x and φ, then (3.5) becomes

ϕn+1
± = ϕn

± −∆tH
(

~x, ϕ
n+ 1

2
± , (∇ϕ)

n+ 1
2

±

)

,

where

ϕ
n+ 1

2
± = ϕn

± −
∆t

2
H
(

~x, ϕn
±, (∇ϕ)n

±
)

,

and the Taylor expansion (3.6) contains the additional term

−∆t

2

[

∂

∂x(p)
H (~x, ϕ,∇ϕ) +

∂

∂ϕ
H (~x, ϕ,∇ϕ)

∂ϕ

∂x(p)

]
∣

∣

∣

∣

(x±,tn)

.

2. We would like to stress that the fully-discrete scheme in [18] that was derived as an
intermediate step in developing the semi-discrete scheme, was only first-order in
time. Moreover, in 2D our scheme is based only on two flux evaluations compared
with four flux evaluations in [17, 18]. It also does not require any estimation of
the local speed of propagation at every grid point (as required in [17, 18]) at the
price of being more dissipative.

We would like to summarize the second-order N -dimensional algorithm for a general
Hamiltonian H(~x, φ,∇φ) :



12 S. Bryson and D. Levy

Algorithm 3.1 Let the distance of the evolution points from the origin be a = 1
N+

√
N

.

1. For each grid node xα and each k compute

∆+
k ϕn

α = ϕn
α+ek

− ϕn
α and ∆−

k ϕn
α = ϕn

α − ϕn
α−ek

.

2. For each grid node xα and for each j and k compute

Dj∆
±
k ϕn

α = MM

[

θ
(

∆±
k ϕn

α+ej
−∆±

k ϕn
α

)

,
1

2

(

∆±
k ϕn

α+ej
−∆±

k ϕn
α−ej

)

,

θ
(

∆±
k ϕn

α −∆±
k ϕn

α−ej

)]

.

3. For each grid node xα compute

ϕn
± = ϕn

α ± a
N
∑

k=1

∆±
k ϕn

α +
a (a− 1)

2

N
∑

k=1

Dk∆
±
k ϕn

α +
a2

2

N
∑

j=1

N
∑

k=1
k 6=j

Dj∆
±
k ϕn

α,

and for each p compute

(

∂ϕ

∂x(p)

)n

±
=

∆±
p ϕn

α

∆x
± 2a− 1

2

Dp∆
±
p ϕn

α

∆x
± a

2

N
∑

k=1
k 6=p

Dp∆
±
k ϕn

α +Dk∆
±
p ϕn

α

∆x
,

(

∂ϕ

∂x(p)

)n+ 1
2

±
=

(

∂ϕ

∂x(p)

)n

±
− ∆t

2

[

∂

∂x(p)
H
(

~x, ϕn
±, (∇ϕ)n

±
)

+

+
∂

∂ϕ
H
(

~x, ϕn
±, (∇ϕ)n

±
)

(

∂ϕ

∂x(p)

)n

±
+

+

N
∑

k=1

∂

∂ ∂ϕ
∂xk

H
(

~x, ϕn
±, (∇ϕ)n

±
)

[

Dp∆
±
k ϕn

α +Dk∆
±
p ϕn

α

2 (∆x)2

]]

,

ϕn+1
α± = ϕn

± −∆tH
(

(∇ϕ)
n+ 1

2
±

)

,

where H
(

(∇ϕ)n
±
)

= H
(

(

∂ϕ
∂x(1)

)n

± , . . . ,
(

∂ϕ
∂x(N)

)n

±

)

.

4. Let D0 = 2a
√

N∆x, D+ = D− = (1− 2a)
√

N∆x. For each xα compute

(dϕ)n+1
0

D0
=

ϕn+1
α+ − ϕn+1

α−
D0

,
(dϕ)n+1

+

D+
=

ϕn+1
(α+1)− − ϕn+1

α+

D+
,
(dϕ)n+1

−
D−

=
ϕn+1

α+ − ϕn+1
(α−1)+

D−
,
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(where α± 1 is the multi-index (α1 ± 1, . . . , αN ± 1) )

D (dϕ)n+1
0 = MM

[

θ

(

(dϕ)n+1
+

D+
− (dϕ)n+1

0

D0

)

,
1

2

(

(dϕ)n+1
+

D+
−

(dϕ)n+1
−

D−

)

,

θ

(

(dϕ)n+1
0

D0
−

(dϕ)n+1
−

D−

)]

,

5. For each xα compute

ϕn+1
α =

1

2

(

ϕn+1
α+ + ϕn+1

α−
)

− D2
0

8D2

D (dϕ)n+1
0 .

4 Numerical Examples

We demonstrate the schemes developed in Section 2 and Section 3 with several examples.
Most of these examples are standard test cases that can be found, e.g., in [18, 30, 33].

Example 1: A convex Hamiltonian

We start by testing the performance of our schemes on a convex Hamiltonian. We
approximate solutions of the one-dimensional equation

φt +
1

2
(φx + 1)2 = 0, (4.1)

subject to the initial data φ(x, 0) = − cos(πx) and to periodic boundary conditions on
[0, 2]. The change of variables, u (x, t) = φx (x, t) + 1, transforms the equation into the
Burger’s equation, ut+

1
2
(u2)x = 0, which can be solved via the method of characteristics

[33]. As is well known, Burger’s equation generally develops discontinuous solutions even
with smooth initial data, and hence we expect the solutions of (4.1) to have discontinuous
derivatives. In our case, the solution develops a singularity at time t = π−2.

The results of our simulations are shown in Figure 4.1 and Figure 4.2. The order
of accuracy of these methods is determined from the L1-norm of the error (see [29]).
The results before the singularity, at T = 0.8/π2, are given in Table 4.1, and after the
singularity at T = 1.5/π2 in Table 4.2.

In 2D we solve a similar problem

φt +
1

2
(φx + φy + 1)2 = 0, (4.2)

which can be reduced to a one-dimensional problem via the coordinate transformation
(

ξ
η

)

= 1
2

(

1 1
1 −1

)(

x
y

)

. The results of the second-order calculations for the

initial data φ (x, y, 0) = − cos (π(x + y)/2) = − cos (πξ) are shown in Figures 4.3–4.4.
The convergence rates for the first- and second-order 2D schemes before and after the
development of the singularity are shown in Tables 4.3–4.4.
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First-order method Second-order method
N L1-error L1-order L1-error L1-order

40 0.0342 – 6.14×10−3 –
80 0.0172 1.00 1.53×10−3 2.00
160 0.0082 1.06 3.62×10−4 2.08
320 0.0040 1.03 8.77×10−5 2.04

Table 4.1: L1-errors for the 1D convex HJ problem (4.1) before the singularity formation.
T = 0.8/π2.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

40 0.0788 – 0.0110 –
80 0.0379 1.06 2.70×10−3 2.03
160 0.0183 1.05 6.79×10−4 1.99
320 0.0091 1.00 2.28×10−5 1.57

Table 4.2: L1-errors for the 1D convex HJ problem (4.1) after the formation of the singularity.
T = 1.5/π2.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 0.299819 – 0.0261816 –
100 0.144967 1.05 0.0061162 2.10
200 0.0712024 1.03 0.00146501 2.06

Table 4.3: L1-errors for the 2D convex HJ problem (4.2) before the singularity formation.
T = 0.8/π2.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 0.44437 – 0.0356362 –
100 0.215055 1.05 0.0101615 1.81
200 0.104421 1.02 0.00237225 2.10

Table 4.4: L1-errors for the 2D convex HJ problem (4.2) after the singularity formation.
T = 1.5/π2.
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We proceed with a 3D generalization of (4.2),

φt +
1

2
(φx + φy + φz + 1)2 = 0, (4.3)

subject to the initial data φ (x, y, 0) = − cos (π(x + y + z)/3). The convergence results
for the first- and second-order 3D schemes before and after the singularity formation
are given in Tables 4.5–4.6.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 5.932 – 0.672 –
100 2.838 1.06 0.155 2.12
200 1.76 0.69 0.041 1.92

Table 4.5: L1-errors for the 3D convex HJ problem (4.3) before the singularity formation.
T = 0.08.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 8.801 – 0.776 –
100 4.148 1.09 0.171 2.18
200 2.138 0.96 0.055 1.65

Table 4.6: L1-errors for the 3D convex HJ problem (4.3) after the singularity formation.
T = 0.152.

Example 2: A non-convex Hamiltonian

In this example we deal with non-convex Hamilton-Jacobi equations. In 1D we solve

φt − cos (φx + 1) = 0, (4.4)

subject to the initial data, φ (x, 0) = − cos (πx), and periodic boundary conditions
on [0, 2]. In this case, (4.4), has a smooth solution for t . 1.049/π2, after which a
singularity forms. A second singularity forms at t ≈ 1.29/π2. The results are shown in
Figures 4.5–4.6. The convergence results before and after the singularity formation are
given in Tables 4.7–4.8.

In 2D we solve

φt − cos (φx + φy + 1) = 0, (4.5)

subject to the initial data, φ (x, y, 0) = − cos (π(x + y)/2), and periodic boundary con-
ditions. The results are shown in Figures 4.7–4.8. The convergence results for the first-
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First-order method Second-order method
N L1-error L1-order L1-error L1-order

40 0.0406 – 7.71×10−3 –
80 0.0206 0.99 2.00×10−3 1.95
160 0.0099 1.06 4.75×10−4 2.07
320 0.0048 1.03 1.16×10−4 2.04

Table 4.7: L1-errors for the 1D non-convex HJ problem (4.4) before the singularity formation.
T = 0.8/π2.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

40 0.1057 – 0.0248 –
80 0.0515 1.04 6.92×10−3 1.84
160 0.0248 1.05 1.89×10−3 1.87
320 0.0121 1.04 4.96×10−4 1.93

Table 4.8: L1-errors for the 1D non-convex HJ problem (4.4) after the singularity formation.
T = 1.5/π2.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 0.4046612 – 0.0402387 –
100 0.195242 1.05 0.00999105 2.01
200 0.0958819 1.03 0.0024644 2.02

Table 4.9: L1-errors for the 2D non-convex HJ problem (4.5) before the singularity formation.
T = 0.8/π2.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 0.705644 – 0.0837231 –
100 0.334981 1.07 0.0215121 1.96
200 0.161502 1.05 0.00555327 1.95

Table 4.10: L1-errors for the 2D non-convex HJ problem (4.5) after the singularity formation.
T = 1.5/π2.
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and second-order 2D schemes before and after the singularity formation are given in
Tables 4.9–4.10 and confirm the expected order of accuracy of our methods.

The extension of (4.5) to 3D reads

φt − cos (φx + φy + φz + 1) = 0, (4.6)

The initial data is taken as φ (x, y, 0) = − cos (π(x + y + z)/3) . The convergence rates
for the first- and second-order 3D schemes are given in Tables 4.11–4.12.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 5.071 – 0.603 –
100 2.55 0.99 0.150 2.01
200 1.142 1.16 0.035 2.10

Table 4.11: L1-errors for the 3D non-convex HJ problem (4.6) before the singularity forma-
tion. T = 0.08.

First-order method Second-order method
N L1-error L1-order L1-error L1-order

50 8.594 – 1.100 –
100 4.26 1.01 0.299 1.88
200 1.913 1.16 0.075 1.99

Table 4.12: L1-errors for the 3D non-convex HJ problem (4.6) after the singularity formation.
T = 0.152.

Example 3: A linear advection equation

In this example we solve the 1D linear advection equation, i.e., the Hamiltonian is taken
as H (φx) = φx. We assume periodic boundary conditions on [−1, 1], and take the initial
data as φ (x, 0) = g (x− 0.5) on [−1, 1], where

g (x) = −
(√

3

2
+

9

2
+

2π

3

)

(x + 1) + h(x),

h(x) =















2 cos
(

3π
2

x2
)

−
√

3, −1 < x < − 1
3
,

3
2

+ 3 cos (2πx) , − 1
3

< x < 0,
15
2
− 3 cos (2πx) , 0 < x < 1

3
,

1
3
(28 + 4π + cos (3πx))− 8π

3
√

3
cos
(

π
2
x
)

, 1
3

< x < 1.

This example was designed as to be similar to the one used in [12]. An error in that
reference prevents us from repeating it exactly. The results of the second-order method
are shown in Figure 4.9. The dissipation effects are visible in the round-off of the corners.
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Example 4: 2D eikonal equation in geometric optics

We demonstrate the results obtained with the 2D scheme on the non-convex problem

{

φt +
√

φ2
x + φ2

y + 1 = 0,
φ (x, y, 0) = 1

4
(cos (2πx)− 1) (cos (2πy)− 1)− 1.

(4.7)

This model arises in geometric optics [15]. The results of our second-order method at
time T = 0.6 are shown in Figure 4.10, where we see the sharp corners that develop in
this problem, in agreement with the results in [30].

Example 5: Optimal control

We solve a 2D problem with a more general Hamiltonian of the form H(x, y,∇φ). This
is an optimal control problem related to cost determination [33].

{

φt − sin (y)φx + sin (x) φy + |φy| − 1
2
sin2 (y)− 1 + cos (x) = 0,

φ (x, y, 0) = 0.
(4.8)

This example develops a complex singularity structure. The result of our second-
order scheme is in qualitative agreement with [30] as can be seen in Figure 4.11.
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Figure 4.1: Example 1. The 1D convex Hamiltonian (4.1) before the formation of singu-
larities. T = 0.8/π2. N = 100. Shown are the first-order approximation, the second-order
approximation and the exact solution.
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Figure 4.2: Example 1. The 1D convex Hamiltonian (4.1) after the formation of singular-
ities. T = 1.5/π2. N = 100. Shown are the first-order approximation, the second-order
approximation and the exact solution.

-2

-1

0

1

2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-1.5

-1

-0.5

0

0.5

1

Figure 4.3: Example 1. The 2D convex Hamiltonian (4.2) before the formation of singular-
ities. T = 0.8/π2. N = 40× 40.
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Figure 4.4: Example 1. The 2D convex Hamiltonian (4.2) after the formation of singularities.
T = 1.5/π2. N = 40× 40.
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Figure 4.5: Example 2. The 1D non-convex Hamiltonian (4.4) before the formation of
singularities. T = 0.8/π2. N = 100. Shown are the first-order approximation, the second-
order approximation and the exact solution.
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Figure 4.6: Example 2. The 1D non-convex Hamiltonian (4.4) after the formation of
singularities. T = 1.5/π2. N = 100. Shown are the first-order approximation, the second-
order approximation and the exact solution.
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Figure 4.7: Example 2. The 2D non-convex Hamiltonian (4.2) before the formation of
singularities. T = 0.8/π2. N = 40× 40.
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Figure 4.8: Example 2. The 2D non-convex Hamiltonian (4.2) after the formation of
singularities. T = 1.5/π2. N = 40× 40.
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Figure 4.9: Example 3. A 1D linear advection problem. N = 400.
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Figure 4.10: Example 4. The 2D eikonal equation (4.7). N = 40 × 40. Left: the initial
data. Right: the solution at T = 0.6.
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Figure 4.11: Example 5. The 2D optimal control problem (4.8). T = 1. N = 40× 40.
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Appendix A: A Second-Order 2D MATLAB Imple-

mentation

We present an example of a MATLAB implementation of Algorithm 3.1 in 2D. The
following code provides the core computations for a single time step, but does not include
any handling of boundary conditions. The functions H(phix, phiy), Hphix(phix,

phiy) and Hphiy(phix, phiy) return, respectively, the Hamiltonian H (ϕx, ϕy) and

the derivatives of the Hamiltonian ∂H(ϕx,ϕy)
∂ϕx

and ∂H(ϕx,ϕy)
∂ϕy

. The function minmod is the

slope limiter defined in Section 2.2. This code is somewhat optimized for speed at the
expense of storage, and h := ∆x, k := ∆t.

a1 = 1/(2 + sqrt(2));

a2 = a1*(a1-1)/2;

a3 = a1*a1/2;

a4 = (2*a1-1)/2;

a5 = a1/2;

h2 = h*h;

twoh2 = 2*h2;

kover2 = k/2;

for i=1:N

for j=1:N % compute the first differences

dphix(i,j) = phi(i+1,j) - phi(i,j);

dphiy(i,j) = phi(i,j+1) - phi(i,j);

end

end

for i=1:N

im = i-1;

ip = i+1;

for j=1:N % compute the limited second differences

jm = j-1;

jp = j+1;

dphixx(i,j) = minmod(dphix(ip,j) - dphix(i,j), dphix(ip,j) - dphix(im,j), dphix(i,j) - dphix(im,j));

dphiyx(i,j) = minmod(dphiy(ip,j) - dphiy(i,j), dphiy(ip,j) - dphiy(im,j), dphiy(i,j) - dphiy(im,j));

dphixy(i,j) = minmod(dphix(i,jp) - dphix(i,j), dphix(i,jp) - dphix(i,jm), dphix(i,j) - dphix(i,jm));

dphiyy(i,j) = minmod(dphiy(i,jp) - dphiy(i,j), dphiy(i,jp) - dphiy(i,jm), dphiy(i,j) - dphiy(i,jm));

end

end

for i=1:N

for j=1:N

im = i-1;

jm = j-1;

dphixyp = dphiyx(i,j) + dphixy(i,j);

dphixym = dphiyx(i,jm) + dphixy(im,j);

phip = phi(i,j) + a1*(dphix(i,j) + dphiy(i,j)) + a2*(dphixx(i,j) + dphiyy(i,j)) + a3*dphixyp;
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phim = phi(i,j) - a1*(dphix(im,j) + dphiy(i,jm)) + a2*(dphixx(im,j) + dphiyy(i,jm)) + a3*dphixym;

phixp = (dphix(i,j) + a4*dphixx(i,j) + a5*dphixyp)/h;

phiyp = (dphiy(i,j) + a4*dphiyy(i,j) + a5*dphixyp)/h;

phixm = (dphix(im,j) - a4*dphixx(im,j) - a5*dphixym)/h;

phiym = (dphiy(i,jm) - a4*dphiyy(i,jm) - a5*dphixym)/h;

phixtp = -Hphix(phixp, phiyp)*dphixx(i,j)/h2 - Hphiy(phixp, phiyp)*dphixyp/twoh2;

phiytp = -Hphix(phixp, phiyp)*dphixyp/twoh2 - Hphiy(phixp, phiyp)*dphiyy(i,j)/h2;

phixtm = -Hphix(phixm, phiym)*dphixx(im,j)/h2 - Hphiy(phixm, phiym)*dphixym/twoh2;

phiytm = -Hphix(phixm, phiym)*dphixym/twoh2 - Hphiy(phixm, phiym)*dphiyy(i,jm)/h2;

phihatp(i,j) = phip - k*H(phixp + kover2*phixtp, phiyp + kover2*phiytp);

phihatm(i,j) = phim - k*H(phixm + kover2*phixtm, phiym + kover2*phiytm);

end

end

Dp = (1-2*a1)*h*sqrt(2);

Dm = Dp;

D2 = (D0 + Dp)/2;

D02o8D2 = D0*D0/(8*D2);

for i=1:N

for j=1:N

ip = i+1;

jp = j+1;

im = i-1;

jm = j-1;

dphi0 = (phihatp(i,j) - phihatm(i,j))/D0;

dphip = (phihatm(ip,jp) - phihatp(i,j))/Dp;

dphim = (phihatm(i,j) - phihatp(im,jm))/Dm;

d2phi = minmod(dphip - dphi0, dphip - dphim, dphi0 - dphim);

phi(i,j) = (phihatp(i,j) + phihatm(i,j))/2 - D02o8D2*d2phi;

end

end
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